OC3140 HW/Lab 8 Analysis of Variance

The follow table lists temperature recorded at Carmel, Monterey, Seaside, and Salinas.

	Carmel	Monterey	Seaside	Salinas
6:00 AM	58	58	57.6	66.6
8:00 AM	59	58.8	58.5	67
10:00 AM	60	61	60	69
12:00 AM	61	61	61	70
2:00 PM	62	61.5	61.7	71
4:00 PM	62.5	62	62.5	71.5
6:00 PM	62	61.5	62	71
8:00 PM	61	61	61.5	70

1. Determine if the mean temperatures at these four cities are the same (One-Way). A significance level of 5% is used

Solution see Ch.8 p2-p7

Fill the table as

	Carmel	Monterey	Seaside	Salinas	Grand
6:00 AM	58	58	57.6	66.6	
8:00 AM	59	58.8	58.5	67	
10:00 AM	60	61	60	69	
12:00 AM	61	61	61	70	
2:00 PM	62	61.5	61.7	71	
4:00 PM	62.5	62	62.5	71.5	
6:00 PM	62	61.5	62	71	
8:00 PM	61	61	61.5	70	
sum	485.5	484.8	484.8	556.1	2011.2
mean	60.6875	60.6	60.6	69.5125	62.85
Variance	2.4955	2.0086	3.0743	3.4155	

Method 1 (One-factor ANOVA):

$$s_W^2 = \frac{\sum_{i=1}^p s_i^2}{p} = 2.7485, \quad \overline{X} = \frac{G}{n * p} = 62.85$$

$$s_B^2 = \frac{n \sum_{i=1}^p (\overline{x}_i - \overline{X})^2}{p - 1} = 157.84, \quad F = \frac{s_B^2}{s_W^2} = \frac{157.84}{2.7485} = 57.43$$

Method 2 (Partitioning of Variability):

$$SST = \sum_{i=1}^{p} \sum_{j=1}^{n_i} x_{i,j}^2 - \frac{G^2}{N} = 550.48, \quad SSB = \frac{1}{n} \sum_{i=1}^{p} T_i^2 - \frac{G^2}{N} = 473.5225$$

$$SSW = SST - SSB = 76.9575, \quad MSB = \frac{SSB}{p-1} = 157.8408$$

$$MSW = \frac{SSW}{p(n-1)} = 2.7485, \quad F = \frac{MSB}{MSW} = 57.43$$

using the F table (Ch.5 p21-p22), we have

$$F(\mathbf{a} = 0.05, d.f. = 3,28) = 2.95$$
.

Since

$$2.95 < F (= 57.43)$$
,

we conclude that there is at least one pair of cities has different mean temperature at 5 % level.

2. If there are different mean temperatures, which two cities have different mean temperatures?

Solution: This is **pair-wise** comparison, see Ch.8 p7-p10

Method 1 (Fisher's Least Significant Difference Method):

- From above we know: $s_w^2 = 2.7485$
- Computer *LSD* (n=8, p=4, N=32):

$$LSD = t_{\frac{a}{2}} \sqrt{\frac{2s_w^2}{n}} = 2.048 \sqrt{\frac{2*2.7485}{8}} = 1.6976$$

• Pair-wise Comparison:

$$\begin{aligned} |\overline{x}_{ca} - \overline{x}_{mo}| &= 0.0875 < 1.6976 = LSD \\ |\overline{x}_{ca} - \overline{x}_{se}| &= 0.0875 < 1.6976 = LSD \\ |\overline{x}_{ca} - \overline{x}_{se}| &= 8.825 > 1.6976 = LSD \\ |\overline{x}_{mo} - \overline{x}_{se}| &= 0 < 1.6976 = LSD \\ |\overline{x}_{mo} - \overline{x}_{sa}| &= 8.9125 > 1.6976 = LSD \\ |\overline{x}_{se} - \overline{x}_{sa}| &= 8.9125 > 1.6976 = LSD \end{aligned}$$

The mean temperature at Salinas city has significance difference with other cities.

Method 2 (Tukey's Method):

• a = 0.05, and p = 4 and N - p = 28, the q value from the table (Ch8 Appendix 69)

•
$$Trange = \frac{q}{\sqrt{n}}\sqrt{s_w^2} = 2.2273$$

•

$$\begin{split} & |\overline{x}_{ca} - \overline{x}_{mo}| = 0.0875 < 2.2273 = Trange \\ & |\overline{x}_{ca} - \overline{x}_{se}| = 0.0875 < 2.2273 = Trange \\ & |\overline{x}_{ca} - \overline{x}_{se}| = 8.825 > 2.2273 = Trange \\ & |\overline{x}_{mo} - \overline{x}_{se}| = 0 < 2.2273 = Trange \\ & |\overline{x}_{mo} - \overline{x}_{sa}| = 8.9125 > 2.2273 = Trange \\ & |\overline{x}_{se} - \overline{x}_{sa}| = 8.9125 > 2.2273 = Trange \end{split}$$

The mean temperature at Salinas city has significance difference with other cities.

Method 3 (Scheffs's Method):

•
$$Sreage = \sqrt{(p-1)F_{a,p-1,N-p}} * \sqrt{\left(\frac{1}{n_i} + \frac{1}{n_j}\right) * s_w^2} = \sqrt{3*2.95} * \sqrt{\frac{2}{8}*2.7485} = 2.46$$

 $\begin{aligned} |\overline{x}_{ca} - \overline{x}_{mo}| &= 0.0875 < 2.466 = Srange \\ |\overline{x}_{ca} - \overline{x}_{se}| &= 0.0875 < 2.466 = Srange \\ |\overline{x}_{ca} - \overline{x}_{se}| &= 8.825 > 2.466 = Srange \\ |\overline{x}_{mo} - \overline{x}_{se}| &= 0 < 2.466 = Srange \\ |\overline{x}_{mo} - \overline{x}_{sa}| &= 8.9125 > 2.466 = Srange \\ |\overline{x}_{se} - \overline{x}_{sa}| &= 8.9125 > 2.466 = Srange \end{aligned}$

The mean temperature at Salinas city has significance difference with other cities.

3. Do Carmel, Monterey and Seaside cities have the same average temperature both in location and time (Two-factor)? A significance level of 5% is used

Solution: This is Two-factor (or Two-way) ANOVA (see Ch8, p10-p14)

	Carmel	Monterey	Seaside	Total	Mean
6:00 AM	58	58	57.6	173.6	57.8667
8:00 AM	59	58.8	58.5	176.3	58.7667
10:00 AM	60	61	60	181	60.3333
12:00 AM	61	61	61	183	61
2:00 PM	62	61.5	61.7	185.2	61.7333
4:00 PM	62.5	62	62.5	187	62.3333
6:00 PM	62	61.5	62	185.5	61.8333
8:00 PM	61	61	61.5	183.5	61.1667
Total	485.5	484.8	484.8	1455.1	
mean	60.6875	60.6	60.6		60.6292

The terms are computed in the following.

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij}^{2} - \frac{G^{2}}{I * J} = 88274.59 - 888221.5 = 53.09$$

$$SSA = \sum_{i=1}^{I} \frac{T_{i.}^{2}}{J} - \frac{G^{2}}{I * J} = 88273.06 - 88221.5 = 51.56$$

$$SSB = \sum_{j=1}^{J} \frac{T_{.j}^{2}}{I} - \frac{G^{2}}{I * J} = 88221.54 - 88221.5 = 0.04$$

SSE = SST - SSA - SSB = 53.09 - 51.56 - 0.04 = 1.49

The ANOVA table

Source	Sum of	Degrees of	Mean	F ratio
	Squares	freedom	Squares	
Factor A (time)	51.56	(I-1)=7	7.366	$F_A = 69.49$
Factor B (location)	0.04	(J-1)=2	0.02	$F_{\scriptscriptstyle B}=0.19$
Error	1.49	(I-1)(J-1)=14	0.106	
Total	53.09	<i>IJ</i> -1=23		

From the table, we can get following results:

- Since $F_{.05,7,14} = 2.76 < F_A = 69.49$, we reject the null hypothesis and conclude the average amount of the temperature does vary with time.
- Since $F_{.05,2,14} = 3.74 > F_B = 0.19$, we accept the null hypothesis and conclude the average amount of the temperature does not vary with these three cities.